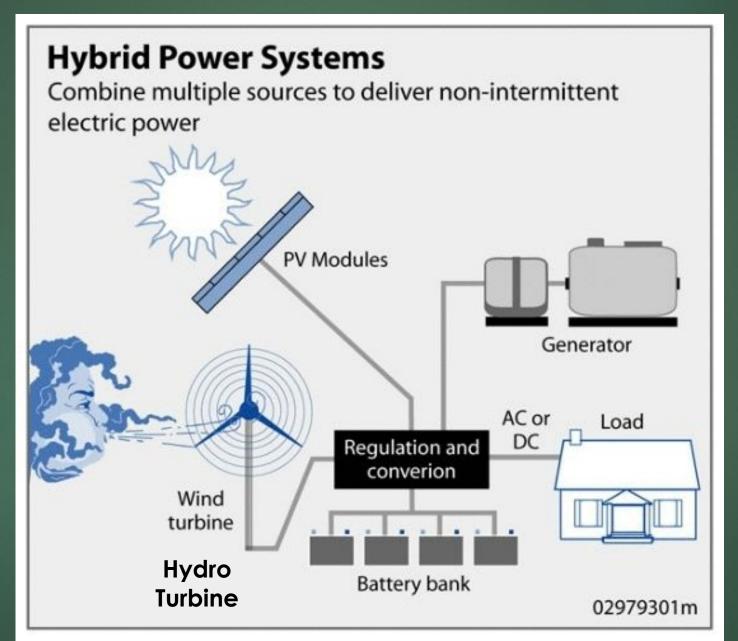
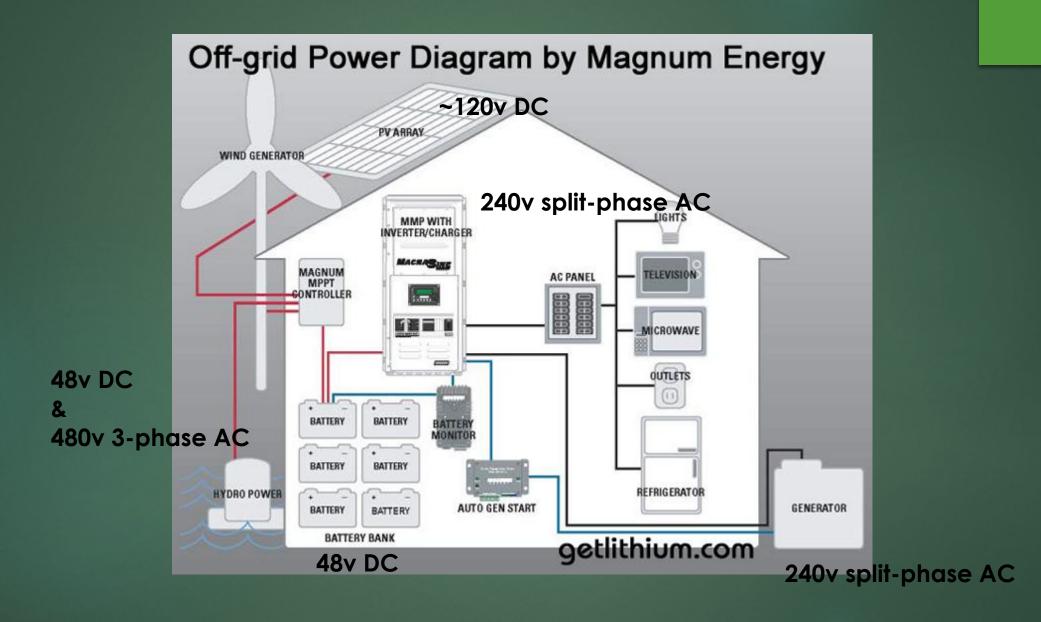
POWER

► WHY DO WE USE RENEWABLE ENERGY TO RUN THE LODGE?


► WHY IS IT IMPORTANT?

POWER Why Use Renewables?


- REDUCE OUR CONTRIBUTION TO CLIMATE CHANGE
 - REDUCING CARBON EMISSIONS INTO THE ATMOSPHERE
 - PARTICULARLY IMPORTANT FOR BELIZE WHY?
- ► PUBLIC HEALTH REDUCE POLLUTION
- ► OPERATE IN A SUSTAINABLE MANNER, WHERE WE CAN
- SERVE AS A MODEL FOR OTHER LODGES/BUSINESSES

GENERAL SET-UP OF OFF-GRID HYBRID POWER SYSTEMS

- PRODUCTION
 - SOLAR
 - HYDRO
 - GENERATOR
- CONTROLS
- STORAGE
- LOAD

LOTS OF DIFFERENT VOLTAGES AND CURRENTS AND PHASES

- Power needs to be converted to Battery Voltage by the Charge Controllers
 - Prevent losses in power at night
 - Prevent overcharging
 - Maximize Power production – Get most power possible out of batteries

- Electricity enters at High voltage DC
- Electricity is converted to battery voltage – lower voltage at a higher current.
- Controller gives lots of information
 - Instantaneous power
 - Power produced

A TOTAL CONTRACTOR	B A to			
Berger Solar Simulator				
Serial No.	1110108251			
Module Type	ERDM 135T;2/6			
Pmax	135	Watts.		
Imp	7.95	Amps.		
Vmp	17.01	Volts.		
Voc	21.85	Volts.		
Isc	8.43	'Amps.		
Temperatura	25°	Celcius		
Max.System Volt.	1000 Volts			
Max.Fuse Rating	15 Amp.			
Cell Technology	Multi-Si Cel	is		
ISOZERT				

Hanwha Solar One GLOBAL ENERGY PRODUCTS & TECHNOLOGY

HSL60P6-PB-4-250Q

	(Pmax)	250 W
Maximum Power	(Voc)	37.7 V
Open Circuit Voltage	(lsc)	8.82 A
Short Circuit Current	(Vmp)	29.8 V
Maximum Power Voltage	(Imp)	8.39 A
Maximum Power Current	1	

All technical data at Standard Test Conditions(STC)

Irradiance Level 1000W/m², Spectrum AM1.5, and Cell Temperature 25 °C

madiance Level 10001	1000V
Maximum System Voltage	45±3°C
Nominal Operating Cell Temperature (NOCT)	-40°Cto +85°C
Temperature Cycling Range	19±0.5kg
Weight	1636x988x40mn
Dimensions	POLY-Si
Cell Technology	15A
Maximum Series Fuse Rating	150

Class C Fire Rating
For field connections, use minimum No.12 AWG copper wires insulated for a minimum of 90 °C

Hanwha SolarOne (Qidong).Co., Ltd.
Address:No.888,Linyang Road
Qidong City Jiangsu Province,China.

Postal Code: 226200 Tel:0086-513-83606222 Fax:0086-513-83606278 www.hanwha-solarone.com

Warning-electrical hazard

4244

Why are they installed in groups, on poles?

Inverter

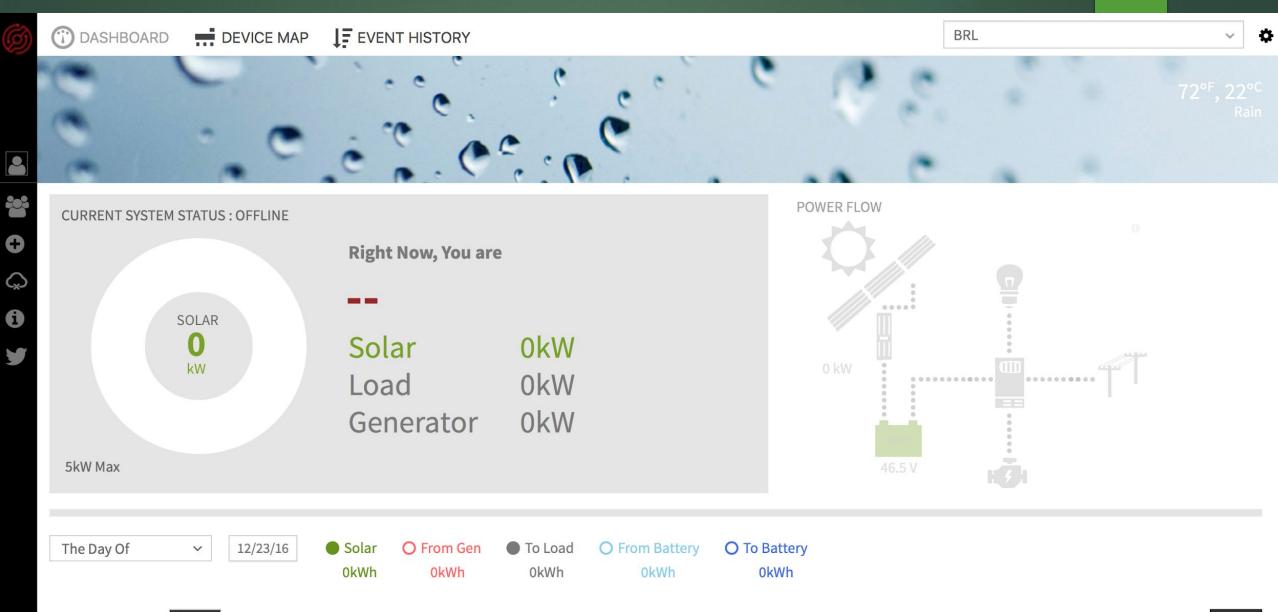
- Inverter and a Charger
- Takes battery voltage and inverts it into the common electrical voltage used in normal homes and businesses – 120v and 240v split-phase
- Is limited in total power production to 10,000 watts, 8,000 watts continuously. Can be stacked in parallel to increase capacity
- Battery Protection When batteries are low, cuts out power
- When Generator is turned on, sends generator power to Lodge loads and uses leftover power to charge batteries
- Without the inverter, we would be in deep trouble!

Inverter

Monitoring Systems

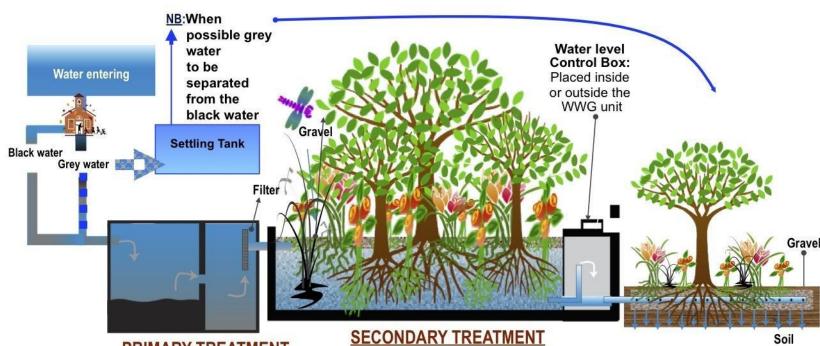
Egauge

- Can view from anywhere with internet connection
- Monitors every circuit from main panel LIVE
- Gives summary of data consumed by circuit
- Diagnose and repair a problem without shutting down all power


Optics Re

- Gives Live access to all the data and information from Inverter
 - Production
 - Load
 - Allows change to Inverter settings from afar

Monitoring Systems


Monitoring Systems

Schematic for the Wastewater Gardens (WWG) system

PRIMARY TREATMENT

SEPARATION OF SOLIDS FROM LIQUIDS

For organic wastewater: Septic tanks (here on schematic), Faecal bags, Imhoff, screener,....

For highly polluted wastewater and/or industrial wastewater: system adapted to nature of wastewater

-If using a septic tank: Residence time should be at least 2.5 days.

SLUDGE SECONDARY TREATMENT AND REUSE

If organic: composting, drying-bed, vermicompost, methane production, ...

WWG Unit

Subsurface Flow constructed wetland (SFCW)

- NB: Drawing here is of an horizontal flow CW with a minimum residence time of 4 days
 - SFCWs can also be designed to provide PRIMARY treatment or TERCIARY treatment.

REUSE OR DISPOSAL OF TREATED WATER

- Small scale systems: drainage trenches filled

- with gravel adapted to local soil permeability.
- Medium to large scale systems: Terciary treatment applied or direct disposal in water ways or reuse for additional productive green zone.